书名或作者
正文关键词
声明:本站书库内容主要引用自 archive.org,kanripo.org, db.itkc.or.kr 和 zh.wikisource.org
卷二十二 (自动笺注)
欽定四庫全書
 新法書卷二十二明徐光啟等撰
  籌算
公元1628年
   算數之學大者畫野經天小者米鹽凌雜凡有形質度數之物與事靡不藉為用焉且從事道者步步蹠實非如談空說玄可欺人以口舌明明布列非如握槊奪標可欺人以强力層層積累非如繇旬刹那可欺人以荒誕也而為術最繁不有簡法濟之當年不能殫惡暇更工他學哉敝國書算其來逺矣乃人之記函弱而心力柔厭與昏每乘之多有畏難中輟後賢别立巧法易之以籌余為譯之簡便數倍以似好學者皆喜以為此術之津梁也遂梓行之傳不云不有博奕者乎為之猶賢乎已是書稍賢於博奕然旅人入來未及他有論著以此先之不亦末乎行復自哂曰小道可觀聊為之佐一籌而已崇禎戊辰暮春廿日羅雅谷
 造法
  一造
或牙或骨或木或合楮俱可其形長方廣為長六之一厚約廣五之一諸籌相準不得短長廣狹厚薄平正光潔便于畫方書字凡籌數任意多寡總之五籌兩面可當單數說見定數十籌當十數十五籌當百數二十籌當千數二十五籌當萬數三十籌當十萬數約以衆籌之厚為一籌長便于作開方籌入匣也詳造匣條
  二分
每籌横平分為九作九方籌籌相等横列之線線相直
          方方相對
 
  三分
每方自左上右下作一對角線則每方成直角
          邊形二横列之則兩籌對角線又成一斜直線其兩直角
三邊形合成平行線方形
  四定數
數自一至九并○共十位籌有二面五籌可滿十數其數以方數與籌上方數相乘每方之中既以對角線分而為二即每方各成二位右位即零數左位十數至第九籌九方九九相承得八十一而止
第一一面零數九方對角線之上各畫一一面
          作一數九對角線上順書一二三四五六七八九數
 
第二一面二數第一方線右書第二方線右書
          四二籌二方二二如四也第三方線右書六二籌三方二三得六也後推此則第四方
右書第五方線右書○線左書一二籌五方二五得十故左位一右位○以當零數也後推此則第六方線右書二線左書一第七方右書四線左書一第八方右書六線左書一第九方右書八線左書一一面作三數第一方線右書三第二方右書第三方線右書九第四方右書二線左書第五方線右書五線左書一第六方右書八線左書一第七方右書一線左書第八方線右書四線左書二第九方右書七線左書
第三一面作四數第一方線右書第二方線右書
          八第三方線右書二線左書一第四方右書六線左書第五方線右書○線左書
第六方線右書四線左書二第七方右書八線左書第八方線右書二線左書三第九方右書六線左書三一面作五數第一方線右書第二方線右書○線左書一第三方右書五線左書一第四方右書○線左書第五方線右書五線左書第六方線右書○線左書三第七方右書五線左書三第八方右書○線左書四第九方右書五線左書
第四籌一面六數第一方線右書第二方線右書
          二線左書一第三方右書八線左書一第四方右書四線左書第五方線右書
○線左書三第六方右書六線左書三第七方右書二線左書第八方線右書八線左書四第九方右書四線左書五一面作七數第一方線右書第二方線右書四線左書一第三方右書一線左書二第四方右書八線左書第五方線右書五線左書三第六方右書二線左書四第七方右書九線左書第八方線右書六線左書五第九方右書三線左書
第五一面八數第一方線右書第二方線右書
          六線左書一第三方右書四線左書二第四方右書二線左書第五方線右書
○線左書第六方線右書八線左書四第七方右書六線左書第八方線右書四線左書六第九方右書二線左書七一面作九數第一方線右書第二方線右書八線左書一第三方右書七線左書二第四方右書六線左書第五方線右書五線左書第六方線右書四線左書五第七方右書三線左書第八方線右書二線左書七第九方右書一線左書
  五定號
號者應于面之左右兩旁厚處露出匣外者記本面數
          目○至九共十號其旁狹難書一二三四等字姑作横線如○則無線一則一横線也
五則結為一縱線以該之如五則一縱六則一縱一横七則一縱二横也各書本面之右用時視其旁即可得之
  六平立方
諸小籌之外别作一大籌長與諸籌等廣約長六分
          二兩横分九方亦與諸籌等其一面平方籌縱作二行右行九方一至九之數為平方根左行九方亦如小籌作對角線平方根
自乘之各書根數之左第一方線右書一第二方右書第三方線右書九第四方右書六線左書第五方線右書五線左書第六方線右書六線左書三第七方右書九線左書第八方線右書四線左書六第九方右書一線左書八其一面立方籌縱作六分右一作一九方一至九之數為立方根二分作一九方一至各自乘之數與平方籌同左三作一九方方止左邊三分之二亦如小籌作對角線是每方分直角三邊形無法四邊形各一也而無法四邊形之中暗具一直方形右一直角三邊形在左今止以左中右分之以中行自乘之數再乘之各書方數之左名立方第一右書一第二方右書第三右書中書二第四方右書中書第五右書中書左書一第六方右書中書一左書二第七方右書中書四左三第八方右書中書一左書五第九方右書中書左書
  七造匣
匣合紙或木為之其形短方其空廣如籌之長空厚如籌之廣匣有蓋以籌長五分之三為匣之深其二為葢之深使籌入匣而旁號露於匣口之上以便抽取也小籌比立匣中方根籌側於小籌之旁下切匣口上切蓋頂正相容也若蓋外徑等於匣之外徑則匣口必出以入蓋夫方根籌之廣與匣之深并尚不及小籌之長以其不及之高則匣與蓋外切籌與蓋匣内切矣若匣之外徑等於蓋之内徑則匣自為蓋冒之可無庸
 賴用算法(凡三條)
  算家加減二法并命分法亦用籌所賴故各具一則
  一加
加者多小幾何并為一大幾何也亦謂之計先以第一小數從左右横列于上次第二小數前横列于下從視之則零對零十對十百對百也分錢兩及寸尺丈俱依此推次零位若成十成十則進一位又視十位若干百則一位千萬以上俱依此推
 假如有銀九萬一千七百六十一兩又八萬二千○七十八兩又四千五百二十兩又九萬○六百五十四兩俱横列則視末位有一八○四并得十三本位三進位加一與六七二五得二十一本位一進加二與七五六得二本位作○
 進位加二與一二四并得九本位書九首位九八九得二十六本位六進位書二得二十六萬九千○一十三兩如物數是斤兩則十六兩成一斤進位尺步畝之類俱依此推
  二減法
減者一大幾何去一幾何幾何也亦謂之除以大數書于上應減數書于下亦零對零十對十百對百也次於每位對除之若除數多於原數則借前位一以除之蓋前位之一即本位之十也除完則得餘數
       假如有銀三十○萬○一百七十六兩三四分内除去二十九萬八千六百四十三兩八錢五分從左首位起上數三下數二三除二存一次位上數○下數九前一成一○除九
 存一三位上數○下數八借前一成一○除八存二四位上數一下數六借前一成一一除六存五五位上數七下數四除四存三六位上數六下數三六除三存三七位上數三下數八借前一成一三除八存五八位上數四下數五借前一成一四除五存九該存一千五百三十二兩四錢九分
  三命二法
命分者一大幾何已分幾何尚餘幾何今應命此餘者為幾何分之幾何也又所餘之小幾何再分幾何今應命此得者為幾何分之幾何也前解曰法數母餘數為子如法數一六八餘數四即命一百六十八分之四十九後解曰得數為子得數前位為母如得數一位則前位為十得六即命為十分之六得數二位則前位為百得數三四即命百分之三十四得數三位則前位為千得數二八三即命為千分之二百八十三得數四五位以上推此第前位定于一數十則一十百則一百千則一千萬則一萬(前一法即九章命分法亦即幾何原本之命比例後一法即九章小數如衡有錢分釐毫量有尺寸分釐厯有分微纖也)
 用法(凡四條)
  一乘
乘數有實有法先將實數依號查籌從左右齊列其兩籌相並所成平行線方形合成一位方形内之數并為一數矣次以籌之方位為法如法數是五則視兩籌第五方是九則視兩籌第九方得數矣若法有二數則先查法尾所得横列之次查法首所得數進一位横列末用加法并之得數法有三數以上依此推顯
 解曰乘者陞也九九陞積之義也數有二一為實一為法可互用大畧以位數多者為實可也用籌則如實數列籌自左而右次法數依籌之同數格上横取之并得數列書之更視次法如前得次啇數進一位書初啇之下三以上倣此啇畢并諸啇數即乘得之
 假如八十三為實四乘之先列八三兩籌視其第四格八號籌下左半斜方有三兩合一斜方有二一并作三三號籌下右半斜方有二并為三百三十二也
 又如毎銀一錢糴米九升五合今有銀三兩五錢問該米若干則以三五為實九五為法查實數二籌齊列次視法尾五查二籌第五行内數是一七五另列再視法首九查二籌第九横行内數有三一五進一位列于前
 得數之下併之得三三二五該米三石三斗二升五合
 又如有米一斗賣錢一百二十五文今有米一十八石三斗問該錢若干則以一八三為實一二五為法查實三籌列次視法尾五查三籌第五行内數是九一五另列次視法次二查三籌第二行内數是三六六
 進一位列于前得數下次視法首一查三籌第一行内數是一八三又進一位列于前得二數之下併之得二二八七五該錢二萬二千八百七十五文如法數有○則徑作一○以當其位再查法數如前如六八三為實三○○為法則作二○乃查三籌第三行内數從二○左進書之餘放此
  二除法
除法有實有法有啇先將法數依號查籌從左右齊列次于諸籌從上至下查横行内連數之等于實數或畧少于實數者在第幾行即是初啇數如在第一行即得數一在九行得數是九也次以查得之數減其實如已盡則止知有初啇未盡則知宜有再啇也有再啇者即再查横行内數之等于存實或畧少于存實者在第幾行即是再啇數又以查得之數減其存數如前又未盡則更有三啇如上法三以上此若得已實數未盡乃實數次位無實則知當有○位即作一○以當次啇或三位俱無知得有二○即又作一○以當三啇乃從後數查之若雖有餘數而其數小于法數是為不盡法法之數用命分法
 解曰除法分率之法也有實有法先列實次以法數平分之故古九章法名為實如法一或省曰而一也除法有二一歸除一啇除啇除者古法歸除後來捷法珠算任用之若書算籌算獨用啇除也用籌則先如法數列籌自左而右别列實數簡籌之某格與實數相合者或畧少于實數者以減實即初啇數也若未盡即如前再啇三啇以上皆如之又未盡則以法命之
 假如列實一百○八以三十六為法除之簡三六兩籌列之視其第三六號籌下右半斜方有八中各斜方有一九共十進一位成百即一百○八除實盡也
 又如有米九升五合價銀一錢今有米三石三斗二升五合問該銀若干以三三二五為實九五為法先以法數二籌齊列次于各行横數内求三三二有則徑減實數無則取其田者二八五以
 二八五減三三二餘四七五為實而此二八五數乃在第三行即三為初啇數次視第五有四七五正與餘實相等減盡即五為次啇數是三五為得數也該銀三兩五錢
 又如每錢三百七十四文買米一斗今有錢八萬七千一百四十二文問該米若干以八七一四二為實三七四為法先以法數三籌列次視各行横數内求八七一無則取其畧少者七四八以七四八減八七一餘一二三四二為實而此七四八乃在第二行即二為初啇數次視各行中無一二三四及畧少者惟第三行有一一二二以一一二二減一二三四餘一一二二為實即三為次啇數次視第三行有一一二二正與餘實相等除盡即三為三啇數該
 米二十三石三斗
 若積數為八七二四八尚有一○六為餘實再欲細分即用命分第一法以餘數一○六為子法數三七四為母即命為三百七十四分之一百○六
 或用命第二法于餘實一○六後加一○依上法再分得二又加一○再分之得八又加一○再分得三得數為二八三凡三位即命為一千之二百八十三
  三開平方法
開平方有積數有啇數啇有方法有廉法隅法置積為實末位下作一㸃向前一位作一㸃每一㸃當作一啇次視平方籌内自乘之數有與實首相等者即除之若無相等則取其相近之畧少者除之但實首以左第一為主若㸃前無位自乘止于零數如一四九是也若㸃前有一位自乘應有十數如十六至八十一是也而此乘數在第幾格則第幾數即初啇數如所用數是九九為三之自乘第三格即三為啇數也若有二㸃者即以初啇數倍之如一倍為二三倍為六也即查所倍之籌列于方籌之左如四倍為八即取第八籌九倍為十八即取第一第八兩籌也次視諸籌横行内數之與存實相等者除之而此數在第幾格則第幾數即次啇數如在第五格即五為次啇數也不盡以法命之三㸃以上倣此
 解曰開平方者自乘還原也而法實相無從置算故以積求形必用方廉三法啇除之如有積一百啇其根(根者一邊數四邊皆同)十即盡實獨用方法無用廉隅矣若一百二十一初啇十除實百餘二十一則倍初啇方根廉法(任加于初啇實一角之旁兩邊故曰廉兩廉故倍初啇根)次啇一以乘得二十以一為隅法實盡則百二十一之積開其根得十一也在籌則右行一至九者即方根數也左二行即方根自乘之數自乘之數止于二位故隔一位㸃查實下作幾㸃知方當幾位也法先于左第一上一位或二位乘數平行求得其根適足已不合則用其少者餘實以待次啇也左㸃或一位或二位者㸃在實首則乘數單數㸃在實首之次位則乘數十數
      如上圖先以第一㸃求初啇根為方法乙為方積不盡二㸃之實以初啇
 根倍之為廉法甲丙之長邊也次啇若干以為隅法丁方一邊也并二廉一隅法以除實甲乙丙丁平方不盡三啇之啇而不盡者以法命之其籌法先列本籌得初啇次啇則列廉法籌于本籌之左本籌之自乘數即隅積也其根隅法也次查所列籌何格中平行并數可當廉法之幾倍及隅方積得其根以除實即得設實下二㸃左一㸃之根為十數右一㸃之根為單數廉法籌為十數本籌數為單數三㸃以上倣此
 假如六百二十五别列為實末位向前一位作一㸃即知啇二位也㸃在實首六為單數視方籌内自乘之數無六其下九過實用其上四實之近少數平行右取二為方法(即方根)另列之為初啇即以四百減六(百)存二(百)以并次㸃
 實得二二五為餘實次倍初啇根得四為廉法(廉有二故倍方根)取四號籌列方籌左于列籌内并數取其合餘實或近少于餘實者至五格適合即五為廉次率為隅法為次啇而本方之根得二十五
          又如積四千四百八十九别列為實末位九向前作二㸃知啇二位㸃在次位則實首四為十數也視籌内自乘
 無四四近少為三六平方取六為方法為初啇即以三六減四四存八以并次㸃之實得八八九為餘實次倍初根得十二為廉法取一二號兩籌列方籌左於列籌并數得八八九在第七格除實盡即七為廉次率為隅法為次啇而本方之根得六十七
 又如有積三萬二千○四十一列為實從末向前一位作一得三㸃知啇三位㸃在實首三為單數視籌自乘三近少為一平行取
         一為方法為初啇即以一減
         三存二以并次㸃得二
         ○為餘實次倍初根廉法
         二取二號籌列左籌方於列
         籌并數得近少者一八九在
         第七格即七為隅法為次啇
         列初啇之右以一八九減餘
         實得三一以并三㸃之實得
         三一四一為次餘實次倍前
 根十七得三四為次廉法取三四兩籌列方籌左于列籌并數得三一四一在第九格適盡即九為三啇為隅法列次啇之右而本方之根得一百七十九
 又如有積六十五萬一千二百四十九列為實末位九向前隔一位作一得三㸃知啇三位㸃在次位則實
         首六為實數也視籌自乘
         六五近少為六四平行取八
         為方法為初啇以六四減六
         五存一以并次㸃得一
         二為餘實次倍初根廉法
         一六取一六兩籌列方籌左
         於列籌并數查無一一二亦
         無近小數即知次啇為○也
         則於八下加○以當次啇而
         以一一二并三㸃之實得一
         一二四九為次餘實次倍前
         根八得一六進一位得一
 ○為次廉法取○籌列一六兩籌之右于列籌并數得一一二四九在第七格適盡即七為三啇為隅法列前二啇之下而本方之根得八○七
 其啇而不盡者以法命之則有二術一如第一六十六萬二千七百四十九如前三啇得根八百一十四餘積一百五十三更啇一當倍廉加隅得一千六百二十八今不足則命為未盡者一
 千六百二十八之一百五十三也
 法曰凡開方不盡實其命分法倍前啇數(二廉也)加一(立隅)為母(續啇之)餘實為子依法命之然終不能盡如設積六十求開方初啇七餘十一倍七加一得十五為母十一為子可命六十之根為七又一十五之一十一而縮試并初啇及分數自之得四十九又二二五之二四三一約之為一十一是二二五之一八一以并四十九得五十九又二二五之一八一不及元積若倍初啇不加一為母命為十四之十一試自之得六十○又一九六之一四一過元積而盈
 其一欲得其小分則通為小數如前第二法更開之當於餘積之右加兩圏(是原積之一化為百也)如法開之得根數當命為一十分之幾分也或加四圏(是原積之化為萬也)
          得根數命為一百分之幾分也或加六圏(一化為百萬)得根命數為一千分之幾分或加十圏(一化為百萬萬)得根命為十萬分之幾分
 如圖原積六六二七四九已啇得八一四不盡者一五三欲得其細分加六圏(是一百五十三化為一萬五千三百○十○萬○千○百○十○也)更開得數為○九三因空位六則命為一千分之○百九十三也欲更細更加空位終不能盡何故六十者本無根之方也
  四開立方
立方亦有積數有啇數啇有方法有平廉法廉法隅法置積為實末位向前二位作㸃每一㸃有一啇次視立方籌内再乘之數有與實首相等者即除之若無相等則取其近少者除之但實首以左第一為主若㸃前無位則再乘止于零數如一如八是也若㸃前有一位則再乘應有十數如二七如六四是也若㸃前有二位則再乘應有百數如一二五至七二九是也而此乘數在第幾格則第幾數即初啇數如所用數是八八為二之再乘在第二格即二為初啇也若有二㸃者以初啇數自乘三倍之如二之自乘得四四之三倍為一十二為平廉法以初啇數三倍之如二之三倍得六為長廉法次以平廉法數查籌列立方籌左又以長廉法數查籌列立方右次視左籌與方籌并之横行内數啇其少于餘實者平行取數為約數以此數為次啇如在五格即次啇五也次以次自乘之數與長廉法數相乘進一位書于約數之下以此二數併之除其餘實即得立方根不盡者以法命之三㸃以上倣此
 解曰立方形者六方面積一實體也每面等每邊每角各等立方積者一數自乘再乘之所積也線有長面有長有廣體有長有廣有高所謂一乘作面再乘作體是也立方者亦以積求形之術其異于平方平方面面有四等線開之求得四線之一為方根立方為體體有十二等線開之求得十二線之一為方根三乘以上亦皆十二線有等不等而皆求其最初第一面之一界線為方根也今解立方廉隅法姑作分合圖論之若截木或鎔蠟作八體分合解之尤易曉矣其一作六方面形一事諸面線角皆相等名方法體即上圖甲乙丙丁立方體是也其二作六面扁方體三事上下面各與
 方法等旁四面之高少于方法之高(任意多寡開訖乃得)而四稜線皆等此名平廉法體即上圖戊己庚辛是也
 其三作六面長方體三事上下左右四面與平廉之旁面兩端四界線皆與平廉之高等此名長廉法體即上圖壬癸是也其四作六面立方體一事六面廣袤皆與長廉之兩端等此名隅法體即上圖子是也
 右度數家以度理解數學(度者㸃線面體量法也數者一十百千等算法也)亦以數理解度學如鳥兩翼交相待而為用也今依此借數以明立方之體如初方體之邊各四則一面之積為一六其容積六四平廉之兩大面亦一六其高五相乘得容積八○長廉之長亦四其兩端
 高廣五則容積一○○立隅之邊各五則其容一二五此八體并之以三平合于初方之甲丙乙丙丙丁三面三長廉補三平三闕以立隅補三長廉之闕即成一總立方也又算法單數單數單數(如四乘六為二四是為六者四積為二十四而其根四乃單數也)單數十數十數(如四乘三十為一二是為三十者四積為一百二十而其根二乃十數也)十數十數百數(如三十乘八十為二四是為八十者三十積為二千四百而其根四乃四百也)推之則十乘百生千百乘百生萬也今依此推前總立方以四十五為全根其初方之一邊為四十其面則為四十者四十是一千六百也是十乘十生百也其容積為一千六百者四十是六萬四千也是十乘百生千也其平廉之兩大面與初方之面等亦一千六百其高五是單數以乘百得八十者百是八千也是單乘百生百也立廉三三倍之得二萬四千也長廉之高廣皆與平廉之高等五是單數其面為二五單根也其長與初方等為四十相乘得四十者二十五是為一百者十則一千也是單乘十生十也長廉三三倍之得三千也立隅體與平廉之高等五是單數自乘得二五亦單數也再乘得一二五亦單數也是單乘單生單數也已上共得九萬一千一百二十五為兩啇之總立方積其根四十五右以數明立體之理其在籌則右行一至九者立方根數也左三行自一至七二九者即方根自乘再乘之數也自乘再乘止于三位如三自乘再乘為二十七九自乘再乘為七百二十九故列實下二位㸃查實下幾㸃知立方根當幾位也法先于第一以上查實簡籌或適足或畧少者即初啇之立方體平行求得其根也次初啇根自乘得平廉面與初啇之體等三倍三平廉也平廉之籌列立方籌之左者立方籌之右行單數中行為十左行為百平廉籌右行之號亦百數也以合於立籌之左行共為幾百也次平廉之面積三偕初啇之根三并為分率數以求六廉一隅之高於立籌平籌上求實之少數(不欲太少為尚有長廉之容故也)約可用平行取根即次啇也不言隅法者次啇之再乘即是立隅籌上所自有也又平行取次啇之平方積乘長廉籌之數得長廉之容長廉之號為十數以列于約數之下進一位十數次求七體之總積初體之外有平廉三長三立隅一其定位立隅在本籌之上為單數次啇與三長廉法相乘得數三長廉之實此數之號為十數三平廉之籌加于立籌之外其號為百數通併之以除餘實未盡而原實有三㸃以先兩啇之總方為初體復如前法三啇之亦并八體一總不及啇為一者依法命之
 同文算指曰先得之根(初啇也)乘于三十今曰三之(長廉法也)所得之號為十數也又曰先根之方(初體之面)乘于三百今曰三之(平廉法也)所得之號為百數也一也
 假如有積四千九百一十三别列為實末位向前二位作一㸃即知啇二位也㸃在實首四為單數立方籌内再乘之數無四下八過實用上一實之少數平行右取一為方法(即方根)另列之為初啇即以一(千)減四(千)存三(千)以并次㸃之實得三九一三為餘實次用初一自乘(為平廉面)而三倍之(三平廉故)得三百為平廉法(亦名倍方數)取三號籌列立方籌左又以初啇一十三倍之(一者長廉邊三長廉故三倍)得三為長廉法(亦名倍根數)取三號籌列立方籌右于列籌(立方籌與平廉籌也)内并數取其少于餘實者為約數其中有長廉之實不得過少又不得多多者如第九格遇三四二九以為約數近少矣另列之向右平自乘
 内平行取八十一乘于長廉法得二百四十三列近少數(三四二九)下進一位并得五八五九則多于餘實也至第七格遇二四四三以為約數另列之向右平自乘平行取四十九以乘廉法得一百四十九列近少數(二四四三)下進一位并得三九一三除實盡(平廉籌之二千一百平廉實也立方籌之三百四十三立隅積平方籌之四十九長廉兩端之面也以乘廉法三十得一四七長廉積也諸籌之上一分明)平行求其根得七即七為次啇也得立方之根一十七
 又如積九百一十五萬九千八百九十九别列為實末位九向前隔二位作一㸃凡三㸃當啇三位也㸃在實首九為單數立方籌内再乘之數無九下二七過實用其上八實之少數平行右取二為方法另列為初啇即以八減九存一以并下位得一一五九為餘實次用初啇二自乘三倍得一十二為平廉法一號二號兩籌列立方籌左又以初啇二三倍之得六為長廉法六號籌列立方籌右於列籌(立方與平廉共三籌)内并數取其少于餘實者為約數之而無有(最少者為第一格之一二○一)則知啇有空位於初啇下作圏以當次啇復開第三㸃之餘實為一一五九八九九前二啇二○(百十也)自乘之得四○○(四萬也)三倍之為一二○○(一千二百)依數取四籌為平廉法立方籌左前啇二○三倍之得六○取二籌為長廉法立方籌右於列籌(立方與平廉共五籌)内并數取其少于餘實者為約數至第九格得一○八○七二九另列之向右平自乘平行取八十一以乘廉法六○得四八六○列近少數(一○八○七二九)下進一位并得一一二九三二九除實不盡三○五七○其三啇平行取根得九并初二啇得立方根二○九不盡者更欲細分之則用命第二法於餘實後加三圏得三○五七○○○○為餘實依上法開之以前啇二○九自乘為四三六八一又三倍之為一三一○四三取此六籌列方籌左為平廉法以前啇二○九三倍之為六二七取此三籌列方籌右為長廉法於列籌(左籌七)内并數取其近少為約數試之至第二格遇二六二○八六○八為近少于餘實(三○五七○○○○)另列之向右平自乘數内平行四乘于長廉法六二七得二五○八列近少數(二六二○八六○八)下進一位并得二六二三三六八八以除實不盡四三三六三一二即取右根二為啇數依法命為一十分之二分也若欲再開則餘實後又加三圏得四三三六三一二○○○為餘實依上法以前啇二○九二自乘為四三七六四六四又三倍得一三一二九三九二取此八籌列方籌左為平廉法以前啇二○九二三倍之為六二七六取此四籌列方籌右為長廉法於列籌(左九籌)内并數取其近少至第三格遇三九三八八一七六二七為近少于餘實(四三三六三一二○○○)另列之向右平自乘平行九乘於長廉法六二七六得五六四八四列近少數(三九三八八一七六二七)下進一位并得三九三九三八二四六七以除實不盡三九六九二九五三三即取右根三為啇數依法命為二百○九又一百分之二十三分也若再開則餘實後又加三圏得三九六九二九五三三○○○為餘實依上法以前啇二○九二三自乘為四三七七七一九二九又三倍得一三一三三一五七八七取此十籌列方籌左為平廉法以前啇二○九二三三倍之得六二七六九取此五籌列方籌右為長廉法於列籌(左十一籌)并數取約至第三格遇三九三九九四七三六一二七為近少于餘實(三九六九二九五三三○○○)另列之向右平自乘平行九乘于長
 法六二七六九得五六四九二一列近少數(三九三九九四七三六一二七)下進一位并得三九四○○○三八五三三七以除實不盡為二九二九一四七六六三即取右根三為啇數依法命為二百○九又一千分之二百三十三也餘實任開之終不盡何者立方不得立方根
 算子錢法(増)
以籌布算乘除諸法皆能去繁就簡不待論矣若算章中有開平立方有用無名方者至難至賾也用籌則比他算特為簡易附載此法按九章衰分中有借本還利皆用乘法即此法之還原也今法必用開方故為難耳
假如借銀若干滿若干還本息總銀若干每年息銀若干
 如本銀一百兩滿一年總還一百二十兩問息若干兩數(本銀一總銀一)相減餘二十是百兩一年之息也又滿二年總還一百四十四兩問每年息例若干法以母銀數(一百)乘總還數(一百四十四)得數為積開方得根數為實以母銀為法減之所餘者為原銀一年之息也若滿三年總還一百七十二兩八錢問息若干又滿四年以上皆息轉為本紛莫可尋則依圖法求之
圖說
 圖有直行横行直行每年所用之法與數横行者諸同類之法同類之數也其直行之首無年數無總銀數者則上年之次法或又次法任用之(白字為法墨字為數)
第一横行為滿年數(借日至日積年之數)
第二横行為所還之總銀(母銀并息銀之總數)
第三横行為母銀所用之法(或母銀自乘或再乘三乘等以求積而開方)
第四横行為母銀用法所乘出數與總銀相乘得數
第五横行為各年所用開積之本法(如開方或開立方等)
第六横行為所求之數(即滿一年總數本息俱見者也)減原銀得息
用法
公元1631年
 假如初借母銀三兩滿四年總還銀四十八兩問每年若干起息(母銀三兩滿一年總還若干即轉為次年之母依前起息總應若干又轉為母如是嵗嵗遞加母數漸増息例如舊)
 法依圖試查滿四年直行第一格為年數(即四)第二格為總還(四十八兩)之銀(原銀若干息例若干各依本例積成總數)第三格母銀所用之法為再乘即以原銀三再自之得二十七第四格以二十七(母所乘出之數)乘四十八(總銀)得一二九六為實第五本年所用開積之法為開平二次(積為一二九六)初開得三十六再開得六六者滿一年之總銀減原銀三餘三為滿一年之息
 又如母銀五十八兩四錢滿三年總還銀一百二十五兩三問一年息若干
 法用本行第三格曰自乘即原數自之得三四一○五六以總銀乘之得四四九二七六一六八第五格法曰開立方用法開得七十六兩五錢(不盡實加三位開零根得)八分九釐八毫不盡減原銀餘十八兩一錢八分九釐八毫為滿一年之息依此例求母銀百兩幾何三率法原銀為一率息例為二率今銀(一百)為三率依法四率三十一兩一錢四分六釐九毫不盡為百兩一年之息
 此用遞加倍數之法詳見算學全義見幾何第十卷
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 新法書卷二十二
背景地图 当代地名
文中地点一览(电脑自动提取,难免有误,仅供参考)